Seismic noise attenuation by means of an anisotropic non-linear diffusion filter
نویسندگان
چکیده
Abstract Noise attenuation is a major seismic data processing concern. In seismic data, noise can appear as random, coherent and/or impulsive. Recently, many different techniques, ranging from relatively simple processes to extremely complex ones, have been used for noise attenuation. Image filtering techniques are relatively new methods in seismic exploration. We introduced the anisotropic non-linear diffusion filter which is an effective way to de-noise images. Since a seismic section can be considered as an image of a two-variable function, we implemented the anisotropic non-linear diffusion filter to reduce both random and Gaussian noises. This filter is shown to be effective in removing noise while preserving edges and hence reducing resolution loss in seismic data. The anisotropic non-linear diffusion filter, with Tukey's function to guide the diffusivity, was applied to synthetic and real seismic data. The results show a signal-to-noise ratio increase with reflector continuity in addition to better recovery of reflector amplitudes even when dealing with complex subsurface geological structures. © 2010 Elsevier Ltd.
منابع مشابه
Application of Single-Frequency Time-Space Filtering Technique for Seismic Ground Roll and Random Noise Attenuation
Time-frequency filtering is an acceptable technique for attenuating noise in 2-D (time-space) and 3-D (time-space-space) reflection seismic data. The common approach for this purpose is transforming each seismic signal from 1-D time domain to a 2-D time-frequency domain and then denoising the signal by a designed filter and finally transforming back the filtered signal to original time domain. ...
متن کاملNonlinear structure-enhancing filtering using plane-wave prediction
Attenuation of random noise and enhancement of structural continuity can significantly improve the quality of seismic interpretation. We present a new technique, which aims at reducing random noise while protecting structural information. The technique is based on combining structure prediction with either similarity-mean filtering or lower-upper-middle (LUM) filtering. We use structure predict...
متن کاملAnisotropic Diffusion in ITK
Anisotropic Non-Linear Diffusion is a powerful image processing technique, which allows to simultaneously remove the noise and enhance sharp features in two or three dimensional images. Anisotropic Diffusion is understood here in the sense of Weickert, meaning that diffusion tensors are anisotropic and reflect the local orientation of image features. This is in contrast with the non-linear diff...
متن کاملUsing a novel method for random noise reduction of seismic records
Random or incoherent noise is an important type of seismic noise, which can seriously affect the quality of the data. Therefore, decreasing the level of this category of noises is necessary for increasing the signal-to-noise ratio (SNR) of seismic records. Random noises and other events overlap each other in time domain, which makes it difficult to attenuate them from seismic records. In this r...
متن کاملAttenuation of spatial aliasing in CMP domain by non-linear interpolation of seismic data along local slopes
Spatial aliasing is an unwanted side effect that produces artifacts during seismic data processing, imaging and interpolation. It is often caused by insufficient spatial sampling of seismic data and often happens in CMP (Common Mid-Point) gather. To tackle this artifact, several techniques have been developed in time-space domain as well as frequency domain such as frequency-wavenumber, frequen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Geosciences
دوره 37 شماره
صفحات -
تاریخ انتشار 2011